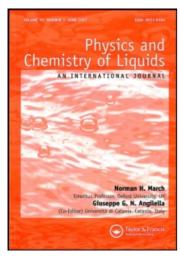
This article was downloaded by:


On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Étude des Interactions du Zinc et de l'Or dans l'Étain Liquide

C. Petot^a; G. Petot-ervas^a; M. Rigaud^b

^a Chargés de recherche au C.N.R.S. Laboratoire de thermodynamique et physico-chimie métallurgiques 18 Rue Hoche, 38-GRENOBLE, France ^b Professeur-assistant Départment, de génie métallurgique Ecole Polytechnique, Montréal, Canada

To cite this Article Petot, C., Petot-ervas, G. and Rigaud, M.(1971) 'Étude des Interactions du Zinc et de l'Or dans l'Étain Liquide', Physics and Chemistry of Liquids, 2: 3, 181 — 191

To link to this Article: DOI: 10.1080/00319107108083811 URL: http://dx.doi.org/10.1080/00319107108083811

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Physics and Chemistry of Liquids. 1971. Vol. 2, pp. 181-191 Copyright © 1971 Gordon and Breach Science Publishers Printed in Great Britain

Étude des Interactions du Zinc et de l'Or dans l'Étain Liquide†

C. PETOT et G. PETOT-ERVAS

Chargés de recherche au C.N.R.S. Laboratoire de thermodynamique et physico-chimie métallurgiques 18 Rue Hoche, 38-GRENOBLE, France

et

M. RIGAUD

Professeur-assistant Départment de génie métallurgique Ecole Polytechnique Montréal, Canada

Received June 18, 1970

Sommaire—Les auteurs ont étudié par voie électrochimique l'influence de faibles additions d'or sur les propriétés thermodynamiques du zinc en solution diluée dans l'étain fondu. Le paramètre d'interaction de Wagner \mathcal{E}_{Zn}^{Au} et sa variation avec la température ont été déterminés dans l'intervalle de température 420-650 °C: $\mathcal{E}_{Zn}^{Au} = 2.71 - 5.92 \cdot 10^{3}/T$.

Abstract—The influence of small additions of gold on the thermodynamic properties of a dilute solution of zinc in molten tin has been studied using an electrochemical method. The Wagner interaction parameter \mathcal{E}_{Zn}^{Au} and its variation with temperature has been determined in the temperature range 420-650 °C: $\mathcal{E}_{Zn}^{Au} = 2.71 - 5.92 \cdot 10^3/T$.

L'activité du zinc dans les alliages (Zn, Au, Sn) est mesurée à l'aide de piles à électrolyte liquide du type suivant:

$$(Zn)/Zn^{++}/(Zn, Au, Sn).$$

L'électrolyte est le mélange eutectique KCl-LiCl contenant 1.5% en poids de chlorure de zinc. Chaque cellule électrochimique comporte 3 électrodes de référence en zinc et 6 alliages dont la fraction molaire en or varie dans l'intervalle de concentration $0-5\cdot 10^{-2}$; la fraction molaire en zinc est identique pour chacun de ces alliages, mais est modifiée d'une cellule à l'autre. Nous avons ainsi obtenu 5 séries de résultats correspondant aux compositions en zinc successivement égales à 10^{-2} , $2\cdot 10^{-2}$, $3\cdot 10^{-2}$, $4\cdot 10^{-2}$, $5\cdot 10^{-2}$.

† Cette étude a été effectuée au laboratoire du département de génie métallurgique de l'Ecole Polytechnique de Montréal.

TABLEAU 1

x_{Au}	0	10-2	2·10-2	3.10-2	4.10-2
0.01 T°K	$E_1 \mathrm{mV}$	E_{2}	E_s	E_4	E_{5}
703	115.84	116.89	118.97	121.42	122.09
721	119.75	119.84	121.62	124.02	124.95
739	124.35	125.32	127.36	129.80	130.32
747	126.21	127.17	129.21	131.65	132.18
755	127.77	128.45	130.18	132.59	133.34
783	133.27	133.89	135.63	138.05	138.71
797	137.64	138.20	139.99	142.44	143.04
822	142.80	143.21	144.67	147.09	148.48
827	144.50	145.29	146.72	149.18	149.71
835	145.93	146.33	147.86	150.26	151.52
859	151.52	151.74	153.38	155.79	156.87
871	155.18	155.71	157.50	159.94	160.23
885	158.29	158.80	160.61	163.06	163.40
915	164.94	165.40	167.20	169.66	169.90
0.02 T°K	E_1	E_z	E_3	E_4	$E_{\mathfrak{s}}$
689	91.35	93.94	95.51	96.96	97.08
698	93.35	95.96	97.51	98.93	98.79
715	96.41	99.00	100.45	101.97	102.00
739	101.28	103.93	105.32	106.81	106.72
767	107.05	109.63	110.97	112.39	112.17
789	111.26	113.81	115.09	116.46	116.16
815	116.55	119.15	120.34	121.68	121.28
831	118.83	121.42	122.39	124.26	123.78
841	122.01	124.57	125.70	126.89	126.39
854	124.04	126.58	127.49	129.17	128.83
863	126.79	129.32	130.40	131.56	130.98
879	129.94	132.48	133.52	134.67	134.03
899	134.08	136.66	137.64	138.69	137.96
930	140.01	142.59	143.45	144.56	143.77

	$x_{ m Au}$	0	10-2	2 · 10 - 2	3.10-2	4.10-2	5.10-
$x_{\rm Zn} = 0.03$	7'°K	E_1	E_2	E_3	E_4	$E_{\mathfrak{s}}$	$E_{\mathfrak{s}}$
	693	78.17	79.28	81.71	82.88	85.78	86.41
	728	85.69	86.77	89.17	90.19	93.12	93.69
	74 5	89.09	90.12	92.61	93.53	96.39	96.88
	765	92.81	93.81	96.28	97.15	100.03	100.44
	777	94.22	95.18	97.59	98.47	101.39	101.89
	793	98.82	99.70	102.06	102.92	105.89	106.12
	$\bf 822$	104.42	105.22	107.54	108.40	111.33	111.48
	845	108.81	109.56	111.87	112.64	115.61	115.70
	873	113.83	114.51	116.81	117.48	120.51	120.53
	897	118.69	119.30	121.55	122.17	125.25	125.14
$r_{\rm Zn} = 0.04$	<i>T</i> °K	E_1	E 2	E ₃	E.	E_5	E 6
	707	74.95	76.94	78.07	80.30	81.74	83.24
	745	81.51	83.35	84.43	86.58	87.10	89.42
	770	85.81	87.59		90.67	91.88	
	781	87.55	89.34	90.32	92.43	93.64	95.13
	816	93.5 0	95.27	96.14	98.22	99.36	100.80
	833	96.50	98.33	99.08	101.19	102.34	103.68
	854	100.23	101.96	102.71	104.75	105.83	107.22
	868	102.52	104.14		106.88	108.30	
	879	104.53	106.24	106.95	108.97	110.01	111.36
	905	109.09	110.76	111.42	113.40	114.42	115.74
$x_{\rm Zn} = 0.05$	<i>T</i> °K	E_{ι}	E 2	E 3	E_4	$E_{\mathfrak{s}}$	E 6
	699	66.10	68.38	70.21	71.48	73.24	74.56
	721	69.76	72.02	73.80	75.03	76.79	78.02
	747	74.17	76.41	78.14	79.31	81.04	82.19
	771	77.24	80.24	81.93	83.05	84.75	85.84
	797	81.92	84.44	86.10	87.15	88.82	89.85
	824	86.39	88.71	90.32	91.34	92.93	93.93
	854	91.58	93.89	95.44	96.37	97.89	98.85
	883	95.78	98.09	99.59	100.45	101.96	102.80
	911	100.41	102.55	104.08	106.17	106.37	107.22
	912	100.56	102.83	104.29	105.04	106.54	107.32
	937	104.29	106.57	108.01	108.73	110.21	110.91

Les tensions sont mesurées à l'aide d'un voltmètre numérique Hewlett-Packard, modèle 2010 D, dont l'impédance d'entrée est égale à 1 mégohm.

Les mesures sont effectuées au cours de paliers de température et afin de vérifier la reproductibilité des résultats, les paliers sont obtenus dans le sens décroissant, puis croissant des températures.

La stabilité des tensions mesurées et l'analyse des électrodes permettent d'assurer, d'une part que nous n'avons pas de volatilisation du zinc allié, et d'autre part que l'étain ne déplace pas le zinc de son chlorure. Enfin, les tensions entre électrodes de référence n'ont jamais été supérieures à 0.2 mV.

Nous avons reporté dans le tableau 1 les valeurs des f.e.m. mesurées en fonction de x_{Au} et à x_{Zn} = Cte, pour différentes températures.

Etude du Systeme Binaire Sn-Zn

Bien que l'étude du système binaire Sn–Zn ait déjà donné lieu à de nombreux travaux, les mesures concernant les alliages de composition en zinc inférieure à $x_{\rm Zn}=0.1$ sont rares. Nos résultats, reportés sur la Fig. 1, montrent que le coefficient d'activité du zinc ne varie pratiquement pas dans l'intervalle de concentration $10^{-2} \le x_{\rm Zn} \le 5 \cdot 10^{-2}$. Les valeurs du logarithme du coefficient d'activité du zinc ont été lissées par la méthode des moindres carrés et peuvent être représentées par la droite d'equation :

$$\ln \gamma_{\rm Zn} = -0.845 + \frac{1154}{T} \tag{1}$$

Nous avons comparé sur la Fig. 2 nos résultats à ceux de Louvet et coll., (1) Cleveland et coll. (2) et aux données de Hultgren. (3) L'équation de la droite ③, Fig. 2, a été déterminée à partir des valeurs du coefficient d'activité limite du zinc à 700 °K et de l'enthalpie partielle molaire du zinc à dilution infinie. (3)

Détermination du Parametre d'Interaction de Wagner

$$\mathscr{E}_{\mathrm{Zn}}^{\mathrm{Au}} = \left(\frac{\partial \ln \, \gamma_{\mathrm{Zn}}}{\partial \, x_{\mathrm{Au}}}\right) \qquad (x_{\mathrm{Au}} = 0, \quad x_{\mathrm{Zn}} = 0)$$

L'étude des variations de la f.e.m. mesurée en fonction de la concentration en or et à différentes températures permet tout d'abord

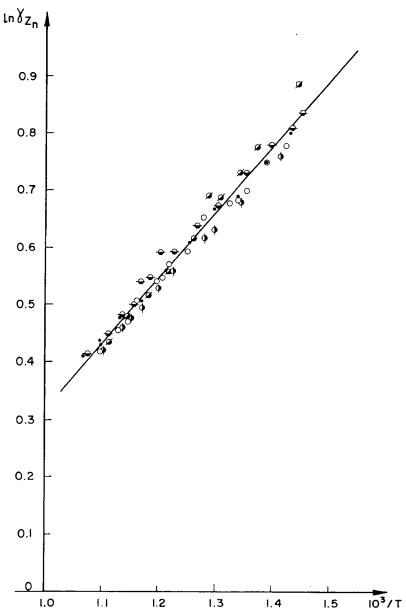


Figure 1. Valeurs du logarithme du coefficient d'activité du zinc pour $x_{\rm Au}=0$, en fonction de l'inverse de la température absolue $-\bigcirc x_{\rm Zn}=0.01$, $\bigcirc x_{\rm Zn}=0.02$, $\bigcirc x_{\rm Zn}=0.03$, $\bigcirc x_{\rm Zn}=0.04$, $\bigcirc x_{\rm Zn}=0.05$.

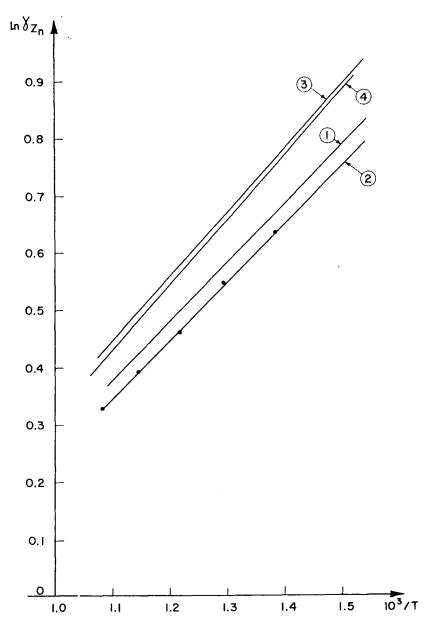


Figure 2. Comparaison des résultats des références (1) Courbe 1, (2) Courbe 2 et (3) Courbe 3, avec ceux de la présente étude, Courbe 4.

d'atteindre les valeurs des coefficients

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right)$$
 $(x_{\rm Au}=0, x_{\rm Zn}={
m Cte}, T={
m Cte})$

Les variations $E = f(x_{Au})$ sont linéaires dans tous les cas et les coefficients des droites $E = A_0 + A_1 x_{Au}$ sont déterminés par la méthode des moindres carrés. Signalons que dans le cas $x_{Zn} = 2 \cdot 10^{-2}$, les valeurs correspondant à la concentration $x_{Au} = 0.04$ n'ont pas été retenues lors du lissage.

Par dérivation de l'expression

$$\ln \gamma_{\rm Zn} = -\frac{EnF}{RT} - \ln x_{\rm Zn} = -\frac{23.2286}{T} (A_0 + A_1 x_{\rm Au}) - \ln x_{\rm Zn} \quad (2)$$

nous obtenons:

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right) = -23.2286 \frac{A_1}{T} \qquad (x_{\rm Au} = 0, x_{\rm Zn} = {\rm cte}, T = {\rm cte}) \qquad (3)$$

 A_1 est évidemment fonction de la température et de la concentration en zinc. Nous avons déterminé par lissage les variations de A_1/T en fonction de 1/T, à concentration en zinc constante, puis les variations de A_1/T en fonction de $x_{\rm Zn}$ à température constante.

Les valeurs des coefficients

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right)$$
 $(x_{\rm Au} = 0, x_{\rm Zn} = {\rm cte}, T = {\rm cte})$

varient linéairement en fonction de l'inverse de la température absolue, comme l'indiquent les équations suivantes déterminées par la méthode des moindres carrés:

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right) = 2.43 - 5.46 \frac{10^3}{T}$$
 $(x_{\rm Au} = 0, x_{\rm Zn} = 10^{-2})$ (4)

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm An}}\right) = 3.79 - 6.91 \frac{10^3}{T}$$
 $(x_{\rm Au} = 0, x_{\rm Zn} = 2 \cdot 10^{-2})$ (5)

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right) = 3.56 - 6.54 \frac{10^3}{T}$$
 $(x_{\rm Au} = 0, x_{\rm Zn} = 3 \cdot 10^{-2})$ (6)

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm An}}\right) = 3.12 - 5.95 \frac{10^3}{T} \qquad (x_{\rm Au} = 0, \quad x_{\rm Zn} = 4 \cdot 10^{-2}) \qquad (7)$$

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right) = 3.82 - 6.56 \frac{10^3}{T} \qquad (x_{\rm Au} = 0, \quad x_{\rm Zn} = 5 \cdot 10^{-2}) \qquad (8)$$

Il devient dès lors possible de déterminer le paramètre d'interaction de Wagner et ses variations éventuelles avec la température.

A partir des équations précédentes, nous avons calculé les valeurs des coefficients pour cinq températures 700, 750, 800, 850, 900 °K, choisies arbitrairement (voir tableau 2).

TABLEAU 2

		_			
<i>T</i> °K	700	750	800	850	900
$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right)$	- 5.37	-4.85	-4.39	- 3.99	- 3.64
$(x_{\rm Au} = 0, x_{\rm Zn} = 10^{-2}, T = \text{cte})$					
$\left(\frac{\partial \ln \gamma_{\mathrm{Zn}}}{\partial x_{\mathrm{Au}}}\right)$	- 6.09	- 5.43	-4.85	- 4.34	- 3.89
$(x_{\text{Au}} = 0, x_{\text{Zn}} = 2 \cdot 10^{-2}, T = \text{cte})$					
$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right)$	- 5.79	-5.16	-4.62	-4.14	- 3.71
$(x_{\text{Au}} = 0, x_{\text{Zn}} = 3 \cdot 10^{-2}, T' = \text{cte})$	_				
$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right)$	- 5.38	- 4.82	- 4.32	- 3.88	- 3.49
$(x_{\text{Au}} = 0, x_{\text{Zn}} = 4 \cdot 10^{-2}, T = \text{cte})$					
$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right)$	- 5.55	-4.92	- 4.37	- 3.89	- 3.46
$(x_{\text{Au}} = 0, x_{\text{Zn}} = 5 \cdot 10^{-2}, T = \text{cte})$					
T = CTe)				-	

La représentation du coefficient ($\partial \ln \gamma_{\rm Zn}/\partial x_{\rm Au}$) ($x_{\rm Au}=0$, $x_{\rm Zn}=$ cte, T= cte) en fonction de la variable $x_{\rm Zn}$ est linéaire (Fig. 3) pour chacune des cinq températures et peut s'exprimer à l'aide des équations suivantes obtenues par la méthode des moindres carrés:

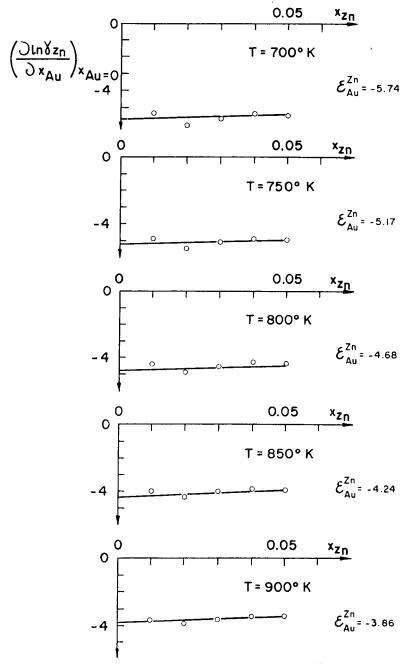


Figure 3. Détermination du paramètre d'interaction $\mathscr{E}_{Au}^{Z_n}$ à différentes températures.

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right) = -5.74 + 3.50 \ x_{\rm Zn} \qquad (x_{\rm Au} = 0, \ T = 700 \,^{\circ}{\rm K})$$

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right) = -5.17 + 4.70 \ x_{\rm Zn} \qquad (x_{\rm Au} = 0, \ T = 750 \,^{\circ}{\rm K})$$

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right) = -4.68 + 5.70 \ x_{\rm Zn} \qquad (x_{\rm Au} = 0, \ T = 800 \,^{\circ}{\rm K})$$

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right) = -4.24 + 6.60 \ x_{\rm Zn} \qquad (x_{\rm Au} = 0, \ T = 850 \,^{\circ}{\rm K})$$

$$\left(\frac{\partial \ln \gamma_{\rm Zn}}{\partial x_{\rm Au}}\right) = -3.86 + 7.60 \ x_{\rm Zn} \qquad (x_{\rm Au} = 0, \ T = 900 \,^{\circ}{\rm K})$$

L'extrapolation, pour $x_{\rm Zn}=0$, des résultats précédents conduit aux valeurs de $\mathscr{E}_{\rm Zn}^{\rm Au}$ reportées dans le tableau 3.

 TABLEAU 3

 T°K
 700
 750
 800
 850
 900

 €Au Zn
 -5.74
 -5.17
 -4.68
 -4.24
 -3.86

La variation du paramètre d'interaction de Wagner en fonction de la température s'exprime par la relation suivante:

$$\mathscr{E}_{Au}^{Zn} = +2.71 - 5.92 \cdot \frac{10^3}{T}$$
 (9)

Conclusion

Cette étude, qui montre que le paramètre d'interaction \mathcal{E}_{Au}^{Zn} est négatif alors que les valeurs d'électronégativité des solutés encadrent celle du solvant étain, confirme ce que certains auteurs ont déjà observé. Ce travail s'inscrit dans le cadre d'une étude expérimentale et théorique des paramètres d'interaction de Wagner où les alliages étudiés ont pour matrice l'étain.

Remerciements

Ce travail a été réalisé avec l'appui financier du Conseil National des Recherches du Canada (A3520) et du Ministère de l'Education de la Province de Québec (CRP 189-69).

ÉTUDE DES INTERACTIONS DU ZINC ET DE L'OR 191

REFERENCES

- Louvet, R. L., Gluck, J. V. et Pehlke, R. D., Trans. of the Metallurgical Society of AIME 242, 2369 (1968).
- Cleveland, S. T., Okajima, K. et Pehlke, R. D., The Journal of Physical Chemistry 69, 4085 (1965).
- Hultgren, R., Orr, R. L., Anderson, P. D. et Kelley, K. K., Selected Values
 of Thermodynamic Properties of Metals and Alloys, John Wiley and Sons,
 Inc. (1963).